Technology tamfitronics
Kaminski, M. M., Abudayyeh, O. O., Gootenberg, J. S., Zhang, F. & Collins, J. J. CRISPR-based diagnostics. Nat. Biomed. Eng. 5643–656 (2021).
Article CAS PubMed Google Scholar
Larson, M. H. et al. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat. Protoc. 82180–2196 (2013).
Article CAS PubMed PubMed Central Google Scholar
Gootenberg, J. S. et al. Nucleic acid detection with CRISPR–Cas13a/C2c2. Science 356438–442 (2017).
Article CAS PubMed PubMed Central Google Scholar
Hsu, P. D., Lander, E. S. & Zhang, F. Development and applications of CRISPR–Cas9 for genome engineering. Cell 1571262–1278 (2014).
Article CAS PubMed PubMed Central Google Scholar
Kellner, M. J., Koob, J. G., Gootenberg, J. S., Abudayyeh, O. O. & Zhang, F. SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat. Protoc. 142986–3012 (2019).
Article CAS PubMed PubMed Central Google Scholar
Zheng, Y. et al. CRISPR interference-based specific and efficient gene inactivation in the brain. Nat. Neurosci. 21447–454 (2018).
Article CAS PubMed Google Scholar
Guilinger, J. P., Thompson, D. B. & Liu, D. R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 32577–582 (2014).
Article CAS PubMed PubMed Central Google Scholar
Chen, B. H. et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 1551479–1491 (2013).
Article CAS PubMed PubMed Central Google Scholar
Deng, W. L., Shi, X. H., Tjian, R., Lionnet, T. & Singer, R. H. CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells. Proc. Natl Acad. Sci. USA 11211870–11875 (2015).
Article CAS PubMed PubMed Central Google Scholar
Fu, Y. et al. High-frequency off-target mutagenesis induced by CRISPR–Cas nucleases in human cells. Nat. Biotechnol. 31822–826 (2013).
Article CAS PubMed PubMed Central Google Scholar
Zhu, Z. et al. PAM-free loop-mediated isothermal amplification coupled with CRISPR/Cas12a cleavage (Cas-PfLAMP) for rapid detection of rice pathogens. Biosens. Bioelectron. 204114076 (2022).
Article CAS PubMed Google Scholar
Mitsis, P. G. & Kwagh, J. G. Characterization of the interaction of lambda exonuclease with the ends of DNA. Nucleic Acids Res. 273057–3063 (1999).
Article CAS PubMed PubMed Central Google Scholar
Zhang, J., McCabe, K. A. & Bell, C. E. Crystal structures of λ exonuclease in complex with DNA suggest an electrostatic ratchet mechanism for processivity. Proc. Natl Acad. Sci. USA 10811872–11877 (2011).
Article CAS PubMed PubMed Central Google Scholar
Pan, X. et al. A structure–activity analysis for probing the mechanism of processive double-stranded DNA digestion by λ exonuclease trimers. Biochemistry 546139–6148 (2015).
Article CAS PubMed Google Scholar
Tian, J. et al. dsDNA/ssDNA-switchable isothermal colorimetric biosensor based on a universal primer and λ exonuclease. Sens. Actuators B Chem. 323128674 (2020).
Article CAS Google Scholar
Liu, L., Lei, J., Gao, F. & Ju, H. A DNA machine for sensitive and homogeneous DNA detection via λ exonuclease assisted amplification. Talent 115819–822 (2013).
Article CAS PubMed Google Scholar
Yu, Y. et al. Digestion of dynamic substrate by exonuclease reveals high single-mismatch selectivity. Anal. Chem. 9013655–13662 (2018).
Article CAS PubMed Google Scholar
Roy, R., Hohng, S. & Ha, T. A practical guide to single-molecule FRET. Nat. Methods 5507–516 (2008).
Article CAS PubMed PubMed Central Google Scholar
Hohlbein, J., Craggs, T. D. & Cordes, T. Alternating-laser excitation: single-molecule FRET and beyond. Chem. Soc. Rev. 431156–1171 (2014).
Article CAS PubMed Google Scholar
Sustarsic, M. & Kapanidis, A. N. Taking the ruler to the jungle: single-molecule FRET for understanding biomolecular structure and dynamics in live cells. Curr. Opin. Struct. Biol. 3452–59 (2015).
Article CAS PubMed Google Scholar
Wu, T. et al. Noncanonical substrate preference of λ exonuclease for 5′-nonphosphate-ended dsDNA and a mismatch-induced acceleration effect on the enzymatic reaction. Nucleic Acids Res. 463119–3129 (2018).
Article CAS PubMed PubMed Central Google Scholar
Wu, T. et al. DNA terminal structure-mediated enzymatic reaction for ultra-sensitive discrimination of single nucleotide variations in circulating cell-free DNA. Nucleic Acids Res. 46e24 (2018).
Article CAS PubMed Google Scholar
Zhang, J. J., McCabe, K. A. & Bell, C. E. Crystal structures of λ exonuclease in complex with DNA suggest an electrostatic ratchet mechanism for processivity. Proc. Natl Acad. Sci. USA 10811872–11877 (2011).
Article CAS PubMed PubMed Central Google Scholar
Zhang, J., Pan, X. & Bell, C. E. Crystal structure of λ exonuclease in complex with DNA and Ca2+. Biochemistry 537415–7425 (2014).
Article CAS PubMed Google Scholar
Singh, D. et al. Mechanisms of improved specificity of engineered Cas9s revealed by single-molecule FRET analysis. Nat. Struct. Mol. Biol. 25347–354 (2018).
Article CAS PubMed PubMed Central Google Scholar
Cromwell, C. R. et al. Incorporation of bridged nucleic acids into CRISPR RNAs improves Cas9 endonuclease specificity. Nat. Commun. 91448 (2018).
Article PubMed PubMed Central Google Scholar
Kim, Y.-M., Choi, K. H., Jang, Y.-J., Yu, J. & Jeong, S. Specific modulation of the anti-DNA autoantibody–nucleic acids interaction by the high affinity RNA aptamer. Biochem. Biophys. Res. Commun. 300516–523 (2003).
Article CAS PubMed Google Scholar
Machinek, R. R., Ouldridge, T. E., Haley, N. E., Bath, J. & Turberfield, A. J. Programmable energy landscapes for kinetic control of DNA strand displacement. Nat. Commun. 55324 (2014).
Article CAS PubMed Google Scholar
Monis, P. T. & Giglio, S. Nucleic acid amplification-based techniques for pathogen detection and identification. Infect. Genet. Evol. 62–12 (2006).
Article CAS PubMed Google Scholar
Nouri, R. et al. CRISPR-based detection of SARS-CoV-2: a review from sample to result. Biosens. Bioelectron. 178113012 (2021).
Article CAS PubMed PubMed Central Google Scholar
Thong, K. L., Lai, M., Teh, C. S. J. & Chua, K. H. Simultaneous detection of methicillin-resistant Staphylococcus aureus, Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa by multiplex PCR. Trop. Biomed. 2821–31 (2011).
CAS PubMed Google Scholar
De Oliveira, DM et al. Antimicrobial l resistance in ESKAPE pathogens. Clin. Microbiol. Rev. 33e00181-19 (2020).
Article PubMed PubMed Central Google Scholar
Harvey, W. T. et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 19409–424 (2021).
Article CAS PubMed PubMed Central Google Scholar
Wang, Y. et al. Detection of SARS-CoV-2 and its mutated variants via CRISPR–Cas13-based transcription amplification. Anal. Chem. 933393–3402 (2021).
Article CAS PubMed Google Scholar
Liang, Y. et al. CRISPR–Cas12a-based detection for the major SARS-CoV-2 variants of concern. Microbiol. Spectr. 9e01017–e01021 (2021).
Article CAS PubMed PubMed Central Google Scholar
Gootenberg, J. S. et al. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a and Csm6. Science 360439–444 (2018).
Article CAS PubMed PubMed Central Google Scholar
Jackson, C. B., Zhang, L., Farzan, M. & Choe, H. Functional importance of the D614G mutation in the SARS-CoV-2 spike protein. Biochem. Biophys. Res. Commun. 538108–115 (2021).
Article CAS PubMed Google Scholar
Martin, D. P. et al. The emergence and ongoing convergent evolution of the SARS-CoV-2 N501Y lineages. Cell 1845189–5200 (2021).
Article CAS PubMed PubMed Central Google Scholar
Zhao, S. et al. Boolean logic gate based on DNA strand displacement for biosensing: current and emerging strategies. Nanoscale Horiz. 6298–310 (2021).
Article CAS PubMed Google Scholar
Zhang, D. Y. & Winfree, E. Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. Soc. 13117303–17314 (2009).
Article CAS PubMed Google Scholar
Song, T. et al. Fast and compact DNA logic circuits based on single-stranded gates using strand-displacing polymerase. Nat. Nanotechnol. 141075–1081 (2019).
Article CAS PubMed Google Scholar
Zhang, C. et al. The recent development of hybridization chain reaction strategies in biosensors. ACS Sens. 52977–3000 (2020).
Article CAS PubMed Google Scholar
Li, L. et al. Base excision repair-inspired DNA motor powered by intracellular apurinic/apyrimidinic endonuclease. Nanoscale 111343–1350 (2019).
Article CAS PubMed Google Scholar
van Tricht, C., Voet, T., Lammertyn, J. & Spasic, D. Imaging the unimaginable: leveraging signal generation of CRISPR–Cas for sensitive genome imaging. Trends Biotechnol. 41769–784 (2023).
Article CAS PubMed Google Scholar
Bi, S., Yue, S. Z. & Zhang, S. S. Hybridization chain reaction: a versatile molecular tool for biosensing, bioimaging and biomedicine. Chem. Soc. Rev. 464281–4298 (2017).
Article CAS PubMed Google Scholar
Liang, Y. et al. Visualizing single-nucleotide variations in a nuclear genome using colocalization of dual-engineered CRISPR probes. Anal. Chem. 9411745–11752 (2022).
Article CAS PubMed Google Scholar
Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L. A. RNA-guided editing of bacterial genomes using CRISPR–Cas systems. Nat. Biotechnol. 31233–239 (2013).
Article CAS PubMed PubMed Central Google Scholar
Yu, J., Im, H. & Lee, G. Unwinding mechanism of SARS-CoV helicase (nsp13) in the presence of Ca2+elucidated by biochemical and single-molecular studies. Biochem. Biophys. Res. Commun. 66835–41 (2023).
Article CAS PubMed PubMed Central Google Scholar
Chen, J., Fu, S., Zhang, C., Liu, H. & Su, X. DNA logic circuits for cancer theranostics. Small 18e2108008 (2022).
Article PubMed Google Scholar
Brown, J. M., De Ornellas, S., Parisi, E., Schermelleh, L. & Buckle, V. J. RASER-FISH: non-denaturing fluorescence in situ hybridization for preservation of three-dimensional interphase chromatin structure. Nat. Protoc. 171306–1331 (2022).
Article CAS PubMed Google Scholar
Blanco, M. & Walter, N. G. Analysis of complex single-molecule FRET time trajectories. Methods Enzymol. 472153–178 (2010).
Article CAS PubMed PubMed Central Google Scholar
Discover more from Tamfis
Subscribe to get the latest posts sent to your email.