Balance is the key: Facts about life and nature we cannot deny


*Balance is the key.* Everything is all about balance: if the clouds be filled with rain, they empty themselves upon the earth.. See more at THE MIND GUIDE

  1. Noah built the ark by faith but, he used measurements. There is a place for rational thinking in our walk of faith. Not all decisions should be made with blind hope!

  1. Sarah’s pregnancy was a miracle, but it took nine months just like any other. God’s plans do not negate the importance of process. Sometime you need to wait or work it out.
Work Life Balance
Work Life Balance
  1. The stone that killed Goliath might have been anointed, but David’s skill was also involved. Developing skills does not mean you are not anointed. If you play a piano, play it to the fullest. Don’t take us through the agony of listening to your cacophony in the name of “singing to the Lord”. Skills are important. There is nothing rude with telling that sister “you can’t sing, find something else to do in the house of God”.

  2. Esther received favor to become queen, but she also bathed and prepared her appearance. Preparation is key to become fit for the occasion. Get knowledge, go to school. Stop blaming auto-correct, check your spelling even here on social media. Prepare, because some of us expect nothing but the best from you!

how to balance
Learn to balance
  1. The promised land was full of milk and honey, but they also had to plow, feed cattle, and take care of sheep. Miracles are communication tools that God uses to instill trust, faith and the knowledge of his nature. You need to work, don’t expect miracles in a specific area of life all the time. No one pays rent for a full year with miracle money. We need it, we want it, but God wants what is permanent.

  2. God is the one who created human capacity to memorize things, yet he also told many prophets to write their message. Spirituality does not mean we should not use tools to package the message.

  3. Ruth received favour to marry Boaz, but the coaching of Naomi was necessary. Human coaching is necessary, you need to submit and learn from someone. It will spare you from silly mistakes.

  4. Moses could hear directly from God, but he was wearing himself out with work, it was the wisdom of his father in law that saved him from dying a premature death with exhaustion. It is wisdom to put on a seat belt, brush teeth, and adhere to medical advise. Being spiritual does not mean asking angels to cook food for you!

  5. Naaman was a mighty soldier and a friend of Kings, but he acted as influenced by a Jewish maiden. Even important people are influenced by”insignificant”people. The key thing is proximity that generates influence.

Mishandling of the natural world can cause hindrance to progress, and a total neglect of the spiritual world will definitely cause total failure in all areas of life.

Life is all about balance
Life is all about balance

*Balance is the key.* Everything is all about balance: if the clouds be filled with rain, they empty themselves upon the earth.. See more at THE MIND GUIDE

Please Share !

How to make 60 BTC every month again and again.

Secret Revealed
How to make 60 BTC every month again and again

Have you failed at making money online or failed at trying?

Welcome to the first world class straight Line Cycler.

No need to stress yourself over downlines anymore.

No need to waste your time to click on withdraw and upgrade.

Pays you 0.01 BTC for referring every member.

Start with as low as 0.03 BTC and earn up to 61 BTC again and again.

Everything is done on auto-mode while you smile to your bank daily.

Sign Up Today And You Will Be Glad You Did.

A New Era for Africa Fighters 

Hon.Prince Timothy Nsirim JP. Nigeria Judo federation

It has become quite glaring why the unveiling of DFC Africa witnessed the biggest gathering of sophisticated and successful business magnates, who in different fields are knowned for innovations, which today empowered millions of youths across Africa and beyond. Masonori Mixed Martial Arts Entertainment unveiled its  mixed martial arts  championship fighting brand, DYNAMITE FIGHTING CHAMPIONSHIP  (DFC AFRICA ) on the 13th September 2014. This came after  series of its underground championships such as Judgement Day fight night 2011,Quest for warriors 2012, etc.

Amb. Henry George (left), CEO, DFC Africa

The CEO MASONORI MIXED MARTIAL ARTS ENTERTAINMENT, Amb.Henry George expressed confident that the birth of the fighting brand will position African’s mixed martial arts fighters in the global  stage. 

The CEO, Editim world wide, and president of Nigeria Judo Federation  (NJF), who unveiled the brand expressed  joy that Africa will definitely rule the world of combat sports with platforms like DFC Africa, and would provide opportunities for our talented fighters   to be ranked among the best in the world.

Rita Anon, the CEO  of Verox Group, , thanked masonori team for creating this entertainment opinion, which is real in Africa and she is sure Amb Henry George would use his international contacts to drive and attract the world to Africa and make Africa the hub of mixed martial arts.

Source: DFC Africa 

Three-phase Y and Delta Configurations | Polyphase AC Circuits

Initially we explored the idea of three-phase power systems by connecting three voltage sources together in what is commonly known as the “Y” (or “star”) configuration. This configuration of voltage sources is characterized by a common connection point joining one side of each source. (Figure below)

Three-phase “Y” connection has three voltage sources connected to a common point.

If we draw a circuit showing each voltage source to be a coil of wire (alternator or transformer winding) and do some slight rearranging, the “Y” configuration becomes more obvious in Figure below.

Three-phase, four-wire “Y” connection uses a “common” fourth wire.

The three conductors leading away from the voltage sources (windings) toward a load are typically called lines, while the windings themselves are typically called phases. In a Y-connected system, there may or may not (Figure below) be a neutral wire attached at the junction point in the middle, although it certainly helps alleviate potential problems should one element of a three-phase load fail open, as discussed earlier.

Three-phase, three-wire “Y” connection does not use the neutral wire.

When we measure voltage and current in three-phase systems, we need to be specific as to where we’re measuring. Line voltage refers to the amount of voltage measured between any two line conductors in a balanced three-phase system. With the above circuit, the line voltage is roughly 208 volts. Phase voltage refers to the voltage measured across any one component (source winding or load impedance) in a balanced three-phase source or load. For the circuit shown above, the phase voltage is 120 volts. The terms line current and phase current follow the same logic: the former referring to current through any one line conductor, and the latter to current through any one component.

Y-connected sources and loads always have line voltages greater than phase voltages, and line currents equal to phase currents. If the Y-connected source or load is balanced, the line voltage will be equal to the phase voltage times the square root of 3:

However, the “Y” configuration is not the only valid one for connecting three-phase voltage source or load elements together. Another configuration is known as the “Delta,” for its geometric resemblance to the Greek letter of the same name (Δ). Take close notice of the polarity for each winding in Figure below.

Three-phase, three-wire Δ connection has no common.

At first glance it seems as though three voltage sources like this would create a short-circuit, electrons flowing around the triangle with nothing but the internal impedance of the windings to hold them back. Due to the phase angles of these three voltage sources, however, this is not the case.

One quick check of this is to use Kirchhoff’s Voltage Law to see if the three voltages around the loop add up to zero. If they do, then there will be no voltage available to push current around and around that loop, and consequently there will be no circulating current. Starting with the top winding and progressing counter-clockwise, our KVL expression looks something like this:

Indeed, if we add these three vector quantities together, they do add up to zero. Another way to verify the fact that these three voltage sources can be connected together in a loop without resulting in circulating currents is to open up the loop at one junction point and calculate voltage across the break: (Figure below)

Voltage across open Δ should be zero.

Starting with the right winding (120 V ∠ 120o) and progressing counter-clockwise, our KVL equation looks like this:

Sure enough, there will be zero voltage across the break, telling us that no current will circulate within the triangular loop of windings when that connection is made complete.

Having established that a Δ-connected three-phase voltage source will not burn itself to a crisp due to circulating currents, we turn to its practical use as a source of power in three-phase circuits. Because each pair of line conductors is connected directly across a single winding in a Δ circuit, the line voltage will be equal to the phase voltage. Conversely, because each line conductor attaches at a node between two windings, the line current will be the vector sum of the two joining phase currents. Not surprisingly, the resulting equations for a Δ configuration are as follows:

Let’s see how this works in an example circuit: (Figure below)

The load on the Δ source is wired in a Δ.

With each load resistance receiving 120 volts from its respective phase winding at the source, the current in each phase of this circuit will be 83.33 amps:

So each line current in this three-phase power system is equal to 144.34 amps, which is substantially more than the line currents in the Y-connected system we looked at earlier. One might wonder if we’ve lost all the advantages of three-phase power here, given the fact that we have such greater conductor currents, necessitating thicker, more costly wire. The answer is no. Although this circuit would require three number 1 gage copper conductors (at 1000 feet of distance between source and load this equates to a little over 750 pounds of copper for the whole system), it is still less than the 1000+ pounds of copper required for a single-phase system delivering the same power (30 kW) at the same voltage (120 volts conductor-to-conductor).

One distinct advantage of a Δ-connected system is its lack of a neutral wire. With a Y-connected system, a neutral wire was needed in case one of the phase loads were to fail open (or be turned off), in order to keep the phase voltages at the load from changing. This is not necessary (or even possible!) in a Δ-connected circuit. With each load phase element directly connected across a respective source phase winding, the phase voltage will be constant regardless of open failures in the load elements.

Perhaps the greatest advantage of the Δ-connected source is its fault tolerance. It is possible for one of the windings in a Δ-connected three-phase source to fail open (Figure below) without affecting load voltage or current!

Even with a source winding failure, the line voltage is still 120 V, and load phase voltage is still 120 V. The only difference is extra current in the remaining functional source windings.

The only consequence of a source winding failing open for a Δ-connected source is increased phase current in the remaining windings. Compare this fault tolerance with a Y-connected system suffering an open source winding in Figure below.

Open “Y” source winding halves the voltage on two loads of a Δ connected load.

With a Δ-connected load, two of the resistances suffer reduced voltage while one remains at the original line voltage, 208. A Y-connected load suffers an even worse fate (Figure below) with the same winding failure in a Y-connected source

Open source winding of a “Y-Y” system halves the voltage on two loads, and looses one load entirely.

In this case, two load resistances suffer reduced voltage while the third loses supply voltage completely! For this reason, Δ-connected sources are preferred for reliability. However, if dual voltages are needed (e.g. 120/208) or preferred for lower line currents, Y-connected systems are the configuration of choice.

  • The conductors connected to the three points of a three-phase source or load are called lines.
  • The three components comprising a three-phase source or load are called phases.
  • Line voltage is the voltage measured between any two lines in a three-phase circuit.
  • Phase voltage is the voltage measured across a single component in a three-phase source or load.
  • Line current is the current through any one line between a three-phase source and load.
  • Phase current is the current through any one component comprising a three-phase source or load.
  • In balanced “Y” circuits, line voltage is equal to phase voltage times the square root of 3, while line current is equal to phase current.
  • In balanced Δ circuits, line voltage is equal to phase voltage, while line current is equal to phase current times the square root of 3.
  • Δ-connected three-phase voltage sources give greater reliability in the event of winding failure than Y-connected sources. However, Y-connected sources can deliver the same amount of power with less line current than Δ-connected sources.