Dark Light
Click editing enables programmable genome writing using DNA polymerases and HUH endonucleases

Technology tamfitronics

  • Doudna, J. A. The promise and challenge of therapeutic genome editing. Nature 578229–236 (2020).

    Article CAS PubMed PubMed Central Google Scholar

  • Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38824–844 (2020).

    Article CAS PubMed Google Scholar

  • van Overbeek, M. et al. DNA repair profiling reveals nonrandom outcomes at Cas9-mediated breaks. Mol. Cell 63633–646 (2016).

    Article PubMed Google Scholar

  • Shen, M. W. et al. Predictable and precise template-free CRISPR editing of pathogenic variants. Nature 563646–651 (2018).

    Article CAS PubMed PubMed Central Google Scholar

  • Kosicki, M., Tomberg, K. & Bradley, A. Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 36765–771 (2018).

    Article CAS PubMed PubMed Central Google Scholar

  • Leibowitz, M. L. et al. Chromothripsis as an on-target consequence of CRISPR–Cas9 genome editing. Nat. Genet. 53895–905 (2021).

    Article CAS PubMed PubMed Central Google Scholar

  • Kosicki, M. et al. Cas9-induced large deletions and small indels are controlled in a convergent fashion. Nat. Commun. 133422 (2022).

    Article CAS PubMed PubMed Central Google Scholar

  • Alanis-Lobato, G. et al. Frequent loss of heterozygosity in CRISPR–Cas9-edited early human embryos. Proc. Natl Acad. Sci. USA 118e2004832117 (2021).

    Article CAS PubMed PubMed Central Google Scholar

  • Enache, O. M. et al. Cas9 activates the p53 pathway and selects for p53-inactivating mutations. Nat. Genet. 52662–668 (2020).

    Article CAS PubMed PubMed Central Google Scholar

  • Haapaniemi, E., Botla, S., Persson, J., Schmierer, B. & Taipale, J. CRISPR–Cas9 genome editing induces a p53-mediated DNA damage response. Night. With. 24927–930 (2018).

    Article CAS PubMed Google Scholar

  • Ihry, R. J. et al. p53 inhibits CRISPR–Cas9 engineering in human pluripotent stem cells. Night. With. 24939–946 (2018).

    Article CAS PubMed Google Scholar

  • Cullot, G. et al. CRISPR–Cas9 genome editing induces megabase-scale chromosomal truncations. Nat. Commun. 101136 (2019).

    Article PubMed PubMed Central Google Scholar

  • Cullot, G. et al. Cell cycle arrest and p53 prevent ON-target megabase-scale rearrangements induced by CRISPR–Cas9. Nat. Commun. 144072 (2023).

    Article CAS PubMed PubMed Central Google Scholar

  • Boutin, J. et al. CRISPR–Cas9 globin editing can induce megabase-scale copy-neutral losses of heterozygosity in hematopoietic cells. Nat. Commun. 124922 (2021).

    Article CAS PubMed PubMed Central Google Scholar

  • Tsai, H.-H. et al. Whole genomic analysis reveals atypical non-homologous off-target large structural variants induced by CRISPR–Cas9-mediated genome editing. Nat. Commun. 145183 (2023).

    Article CAS PubMed PubMed Central Google Scholar

  • Hustedt, N. & Durocher, D. The control of DNA repair by the cell cycle. Nat. Cell Biol. 191–9 (2017).

    Article CAS Google Scholar

  • Yeh, C. D., Richardson, C. D. & Corn, J. E. Advances in genome editing through control of DNA repair pathways. Nat. Cell Biol. 211468–1478 (2019).

    Article CAS PubMed Google Scholar

  • Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533420–424 (2016).

    Article CAS PubMed PubMed Central Google Scholar

  • Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551464–471 (2017).

    Article CAS PubMed PubMed Central Google Scholar

  • Rees, H. A. & Liu, D. R. Base editing: precision chemistry on the genome and transcriptome of living cells. Night. Rev. The gene. 19770–788 (2018).

    Article CAS PubMed PubMed Central Google Scholar

  • Grünewald, J. et al. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature 569433–437 (2019).

    Article PubMed PubMed Central Google Scholar

  • Zuo, E. et al. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 364289–292 (2019).

    Article CAS PubMed PubMed Central Google Scholar

  • Park, S. & Beal, P. A. Off-target editing by CRISPR-guided DNA base editors. Biochemistry 583727–3734 (2019).

    Article CAS PubMed Google Scholar

  • Huang, T. P., Newby, G. A. & Liu, D. R. Precision genome editing using cytosine and adenine base editors in mammalian cells. Nat. Protoc. 161089–1128 (2021).

    Article CAS PubMed Google Scholar

  • Porto, E. M., Komor, A. C., Slaymaker, I. M. & Yeo, G. W. Base editing: advances and therapeutic opportunities. Nat. Rev. Drug Discovery 19839–859 (2020).

    Article CAS PubMed Google Scholar

  • Halperin, S. O. et al. CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window. Nature 560248–252 (2018).

    Article CAS PubMed Google Scholar

  • Tou, C. J., Schaffer, D. V. & Dueber, J. E. Targeted diversification in the S. cerevisiae genome with CRISPR-guided DNA polymerase I. ACS Synth. Biol. 91911–1916 (2020).

    Article CAS PubMed Google Scholar

  • Long, M. et al. Directed evolution of ornithine cyclodeaminase using an EvolvR-based growth-coupling strategy for efficient biosynthesis of l-proline. ACS Synth. Biol. 91855–1863 (2020).

    Article CAS PubMed Google Scholar

  • Gossing, M. et al. Multiplexed guide RNA expression leads to increased mutation frequency in targeted window using a CRISPR-guided error-prone DNA polymerase in Saccharomyces cerevisiae. ACS Synth. Biol. 122271–2277 (2023).

    Article CAS PubMed PubMed Central Google Scholar

  • Nakade, S. et al. Frame editors for precise, template-free frameshifting. Preprint at https://doi.org/10.1101/2022.12.05.518807 (2022).

  • Yang, Q. et al. Phage DNA polymerase prevents on-target damage and enhances precision of CRISPR editing. Preprint at https://doi.org/10.1101/2023.01.10.523496 (2023).

  • Yoo, K. W., Yadav, M. K., Song, Q., Atala, A. & Lu, B. Targeting DNA polymerase to DNA double-strand breaks reduces DNA deletion size and increases templated insertions generated by CRISPR/Cas9. Nucleic Acids Res. 503944–3957 (2022).

    Article CAS PubMed PubMed Central Google Scholar

  • Sharon, E. et al. Functional genetic variants revealed by massively parallel precise genome editing. Cell 175544–557.e16 (2018).

    Article CAS PubMed PubMed Central Google Scholar

  • Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576149–157 (2019).

    Article CAS PubMed PubMed Central Google Scholar

  • Kong, X. et al. Precise genome editing without exogenous donor DNA via retron editing system in human cells. Protein Cell 12899–902 (2021).

    Article CAS PubMed PubMed Central Google Scholar

  • Zhao, B., Chen, S.-A. A., Lee, J. & Fraser, H. B. Bacterial retrons enable precise gene editing in human cells. CRISPR J. 531–39 (2022).

    Article CAS PubMed PubMed Central Google Scholar

  • Chen, P. J. & Liu, D. R. Prime editing for precise and highly versatile genome manipulation. Night. Rev. The gene. 24161–177 (2023).

    Article CAS PubMed Google Scholar

  • Berdis, A. J. Mechanisms of DNA polymerases. Chem. Rev. 1092862–2879 (2009).

    Article CAS PubMed Google Scholar

  • Johansson, E. & Dixon, N. Replicative DNA polymerases. Cold Spring Harb. Perspect. Biol. 5a012799 (2013).

    Article PubMed PubMed Central Google Scholar

  • Ponnienselvan, K. et al. Addressing the dNTP bottleneck restricting prime editing activity. Preprint at https://doi.org/10.1101/2023.10.21.563443 (2023).

  • Egli, M. & Manoharan, M. Chemistry, structure and function of approved oligonucleotide therapeutics. Nucleic Acids Res. 512529–2573 (2023).

    Article CAS PubMed PubMed Central Google Scholar

  • Chandler, M. et al. Breaking and joining single-stranded DNA: the HUH endonuclease superfamily. Nat. Rev. Microbiol. 11525–538 (2013).

    Article CAS PubMed PubMed Central Google Scholar

  • Lovendahl, K. N., Hayward, A. N. & Gordon, W. R. Sequence-directed covalent protein-DNA linkages in a single step using HUH-tags. J. Am. Chem. Soc. 1397030–7035 (2017).

    Article CAS PubMed PubMed Central Google Scholar

  • Tompkins, K. J. et al. Molecular underpinnings of ssDNA specificity by Rep HUH-endonucleases and implications for HUH-tag multiplexing and engineering. Nucleic Acids Res. 491046–1064 (2021).

    Article CAS PubMed PubMed Central Google Scholar

  • Aird, E. J., Lovendahl, K. N., St. Martin, A., Harris, R. S. & Gordon, W. R. Increasing Cas9-mediated homology-directed repair efficiency through covalent tethering of DNA repair template. Commun. Biol. 154 (2018).

    Article PubMed PubMed Central Google Scholar

  • Klenow, H. & Overgaard-Hansen, K. Proteolytic cleavage of DNA polymerase from Escherichia coli B into an exonuclease unit and a polymerase unit. FEBS Lett. 625–27 (1970).

    Article CAS PubMed Google Scholar

  • Richardson, C. D., Ray, G. J., DeWitt, M. A., Curie, G. L. & Corn, J. E. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR–Cas9 using asymmetric donor DNA. Nat. Biotechnol. 34339–344 (2016).

    Article CAS PubMed Google Scholar

  • Li, L. et al. Multiple diverse circoviruses infect farm animals and are commonly found in human and chimpanzee feces. J. Virol. 841674–1682 (2010).

    Article CAS PubMed Google Scholar

  • Chandra, A., Hughes, T. R., Nugent, C. I. & Lundblad, V. Cdc13 both positively and negatively regulates telomere replication. Genes Dev. 15404–414 (2001).

    Article CAS PubMed PubMed Central Google Scholar

  • Glustrom, L. W. et al. Single-stranded telomere-binding protein employs a dual rheostat for binding affinity and specificity that drives function. Proc. Natl Acad. Sci. USA 11510315–10320 (2018).

    Article CAS PubMed PubMed Central Google Scholar

  • Smiley, A. T. et al. Watson–Crick base-pairing requirements for ssDNA recognition and processing in replication-initiating HUH endonucleases. mBio 14e02587-22 (2023).

    Article PubMed Google Scholar

  • Lawyer, F. C. et al. High-level expression, purification, and enzymatic characterization of full-length Thermus aquaticus DNA polymerase and a truncated form deficient in 5′ to 3′ exonuclease activity. Genome Res. 2275–287 (1993).

    Article CAS Google Scholar

  • Blanco, L. et al. Highly efficient DNA synthesis by the phage phi 29 DNA polymerase. Symmetrical mode of DNA replication. J. Biol. Chem. 2648935–8940 (1989).

    Article CAS PubMed Google Scholar

  • Esteban, J. A., Soengas, M. S., Salas, M. & Blanco, L. 3′ → 5′ exonuclease active site of phi 29 DNA polymerase. Evidence favoring a metal ion-assisted reaction mechanism. J. Biol. Chem. 26931946–31954 (1994).

    Article CAS PubMed Google Scholar

  • Thyme, S. B., Akhmetova, L., Montague, T. G., Valen, E. & Schier, A. F. Internal guide RNA interactions interfere with Cas9-mediated cleavage. Nat. Commun. 711750 (2016).

    Article CAS PubMed PubMed Central Google Scholar

  • Ponnienselvan, K. et al. Reducing the inherent auto-inhibitory interaction within the pegRNA enhances prime editing efficiency. Nucleic Acids Res. 516966–6980 (2023).

    Article CAS PubMed PubMed Central Google Scholar

  • Zhang, W. et al. Enhancing CRISPR prime editing by reducing misfolded pegRNA interactions. eLife 12RP90948 (2024).

    Article PubMed PubMed Central Google Scholar

  • Nelson, J. W. et al. Engineered pegRNAs improve prime editing efficiency. Nat. Biotechnol. 40402–410 (2022).

    Article CAS PubMed Google Scholar

  • Chen, P. J. et al. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell 184, 5635–5652.e29 (2021).

    Article CAS PubMed PubMed Central Google Scholar

  • Ferreira da Silva, J. et al. Prime editing efficiency and fidelity are enhanced in the absence of mismatch repair. Nat. Commun. 13760 (2022).

    Article CAS PubMed PubMed Central Google Scholar

  • Lahue, R. S., Au, K. G. & Modrich, P. DNA mismatch correction in a defined system. Science 245160–164 (1989).

    Article CAS PubMed Google Scholar

  • Su, S. S., Lahue, R. S., Au, K. G. & Modrich, P. Mispair specificity of methyl-directed DNA mismatch correction in vitro. J. Biol. Chem. 2636829–6835 (1988).

    Article CAS PubMed Google Scholar

  • Mathis, N. et al. Machine learning prediction of prime editing efficiency across diverse chromatin contexts. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02268-2 (2024).

  • Mathis, N. et al. Predicting prime editing efficiency and product purity by deep learning. Nat. Biotechnol. 411151–1159 (2023).

    Article CAS PubMed Google Scholar

  • Paquet, D. et al. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 533125–129 (2016).

    Article CAS PubMed Google Scholar

  • Doman, J. L. et al. Phage-assisted evolution and protein engineering yield compact, efficient prime editors. Cell 1863983–4002.e26 (2023).

    Article CAS PubMed PubMed Central Google Scholar

  • Petri, K. et al. CRISPR prime editing with ribonucleoprotein complexes in zebrafish and primary human cells. Nat. Biotechnol. 40189–193 (2022).

    Article CAS PubMed Google Scholar

  • Grünewald, J. et al. Engineered CRISPR prime editors with compact, untethered reverse transcriptases. Nat. Biotechnol. 41337–343 (2023).

    Article PubMed Google Scholar

  • Li, X. et al. Highly efficient prime editing by introducing same-sense mutations in pegRNA or stabilizing its structure. Nat. Commun. 131669 (2022).

    Article CAS PubMed PubMed Central Google Scholar

  • Ricchetti, M. & Buc, H. E. coli DNA polymerase I as a reverse transcriptase. EMBO J. 12387–396 (1993).

    Article CAS PubMed PubMed Central Google Scholar

  • Krzywkowski, T., Kühnemund, M., Wu, D. & Nilsson, M. Limited reverse transcriptase activity of phi29 DNA polymerase. Nucleic Acids Res. 463625–3632 (2018).

    Article CAS PubMed PubMed Central Google Scholar

  • Kim, D. Y., Moon, S. B., Ko, J.-H., Kim, Y.-S. & Kim, D. Unbiased investigation of specificities of prime editing systems in human cells. Nucleic Acids Res. 4810576–10589 (2020).

    Article CAS PubMed PubMed Central Google Scholar

  • Yu, Z. et al. PEAC-seq adopts Prime Editor to detect CRISPR off-target and DNA translocation. Nat. Commun. 137545 (2022).

    Article CAS PubMed PubMed Central Google Scholar

  • Liang, S.-Q. et al. Genome-wide detection of CRISPR editing in vivo using GUIDE-tag. Nat. Commun. 13437 (2022).

    Article CAS PubMed PubMed Central Google Scholar

  • Liang, S.-Q. et al. Genome-wide profiling of prime editor off-target sites in vitro and in vivo using PE-tag. Nat. Methods 20898–907 (2023).

    Article CAS PubMed Google Scholar

  • Bae, S., Park, J. & Kim, J.-S. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 301473–1475 (2014).

    Article CAS PubMed PubMed Central Google Scholar

  • Kamtekar, S. et al. Insights into strand displacement and processivity from the crystal structure of the protein-primed DNA polymerase of bacteriophage phi29. Mol. Cell 16609–618 (2004).

    Article CAS PubMed Google Scholar

  • Rodríguez, I. et al. A specific subdomain in phi29 DNA polymerase confers both processivity and strand-displacement capacity. Proc. Natl Acad. Sci. USA 1026407–6412 (2005).

    Article PubMed PubMed Central Google Scholar

  • de Vega, M., Lázaro, J. M., Mencía, M., Blanco, L. & Salas, M. Improvement of φ29 DNA polymerase amplification performance by fusion of DNA binding motifs. Proc. Natl Acad. Sci. USA 10716506–16511 (2010).

    Article PubMed PubMed Central Google Scholar

  • Povilaitis, T., Alzbutas, G., Sukackaite, R., Siurkus, J. & Skirgaila, R. In vitro evolution of phi29 DNA polymerase using isothermal compartmentalized self replication technique. Protein Eng. Des. Sel. 29617–628 (2016).

    Article CAS PubMed Google Scholar

  • Ong, J., Tanner, N., Zhang, Y., Bei, Y. & Potapov, V. Variant DNA polymerases having improved properties and method for improved isothermal amplification of a target DNA. US Patent 11,371,028 (2021).

  • Plaper, T. et al. Coiled-coil heterodimers with increased stability for cellular regulation and sensing SARS-CoV-2 spike protein-mediated cell fusion. Sci. Rep. 119136 (2021).

    Article CAS PubMed PubMed Central Google Scholar

  • Lainšček, D. et al. Coiled-coil heterodimer-based recruitment of an exonuclease to CRISPR/Cas for enhanced gene editing. Nat. Commun. 133604 (2022).

    Article PubMed PubMed Central Google Scholar

  • Liu, B. et al. Targeted genome editing with a DNA-dependent DNA polymerase and exogenous DNA-containing templates. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01947-w (2023).

    Article PubMed PubMed Central Google Scholar

  • Trojan, J. et al. Functional analysis of hMLH1 variants and HNPCC-related mutations using a human expression system. Gastroenterology 122211–219 (2002).

    Article CAS PubMed Google Scholar

  • Roberts, T. C., Langer, R. & Wood, M. J. A. Advances in oligonucleotide drug delivery. Nat. Rev. Drug Discov. 19673–694 (2020).

    Article CAS PubMed PubMed Central Google Scholar

  • Pan, W. et al. DNA polymerase preference determines PCR priming efficiency. BMC Biotech. 1410 (2014).

    Article Google Scholar

  • Choi, J. et al. Precise genomic deletions using paired prime editing. Nat. Biotechnol. 40218–226 (2022).

    Article CAS PubMed Google Scholar

  • Jiang, T., Zhang, X. O., Weng, Z. & Xue, W. Deletion and replacement of long genomic sequences using prime editing. Nat. Biotechnol. 40227–234 (2022).

    Article CAS PubMed Google Scholar

  • Anzalone, A. V. et al. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat. Biotechnol. 40731–740 (2022).

    Article CAS PubMed Google Scholar

  • Yarnall, M. T. N. et al. Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases. Nat. Biotechnol. 41500–512 (2023).

    Article CAS PubMed Google Scholar

  • Zheng, C. et al. Template-jumping prime editing enables large insertion and exon rewriting in vivo. Nat. Commun. 143369 (2023).

    Article CAS PubMed PubMed Central Google Scholar

  • Wang, J. et al. Efficient targeted insertion of large DNA fragments without DNA donors. Nat. Methods 19331–340 (2022).

    Article CAS PubMed Google Scholar

  • Gasiunas, G. et al. A catalogue of biochemically diverse CRISPR–Cas9 orthologs. Nat. Commun. 115512 (2020).

    Article CAS PubMed PubMed Central Google Scholar

  • Altae-Tran, H. et al. The widespread IS200/IS605 transposon family encodes diverse programmable RNA-guided endonucleases. Science 37457–65 (2021).

    Article CAS PubMed PubMed Central Google Scholar

  • Martín-Alonso, S., Frutos-Beltrán, E. & Menéndez-Arias, L. Reverse transcriptase: from transcriptomics to genome editing. Trends Biotechnol. 39194–210 (2021).

    Article PubMed Google Scholar

  • Shuto, Y. et al. Structural basis for pegRNA-guided reverse transcription by a prime editor. Nature 631224–231 (2024).

    Article CAS PubMed PubMed Central Google Scholar

  • Yang, L. et al. Efficient delivery of antisense oligonucleotides using bioreducible lipid nanoparticles in vitro and in vivo. Mol. Ther. Nucleic Acids 191357–1367 (2020).

    Article CAS PubMed PubMed Central Google Scholar

  • Farbiak, L. et al. All‐in‐one dendrimer‐based lipid nanoparticles enable precise HDR‐mediated gene editing in vivo. Adv. Mater. 332006619 (2021).

    Article CAS Google Scholar

  • Dahlman, J. E. et al. Barcoded nanoparticles for high throughput in vivo discovery of targeted therapeutics. Proc. Natl Acad. Sci. USA 1142060–2065 (2017).

    Article CAS PubMed PubMed Central Google Scholar

  • Xue, L. et al. High-throughput barcoding of nanoparticles identifies cationic, degradable lipid-like materials for mRNA delivery to the lungs in female preclinical models. Nat. Commun. 151884 (2024).

    Article CAS PubMed PubMed Central Google Scholar

  • Chen, K. et al. Lung and liver editing by lipid nanoparticle delivery of a stable CRISPR–Cas9 RNP. Preprint at https://doi.org/10.1101/2023.11.15.566339 (2023).

  • Wei, T. et al. Lung SORT LNPs enable precise homology-directed repair mediated CRISPR/Cas genome correction in cystic fibrosis models. Nat. Commun. 147322 (2023).

    Article CAS PubMed PubMed Central Google Scholar

  • Onuma, H., Sato, Y. & Harashima, H. Lipid nanoparticle-based ribonucleoprotein delivery for in vivo genome editing. J. Controlled Release 355406–416 (2023).

    Article CAS Google Scholar

  • Kazlauskas, D., Varsani, A., Koonin, E. V. & Krupovic, M. Multiple origins of prokaryotic and eukaryotic single-stranded DNA viruses from bacterial and archaeal plasmids. Nat. Commun. 103425 (2019).

    Article PubMed PubMed Central Google Scholar

  • Kleinstiver, B. P. et al. Engineered CRISPR–Cas9 nucleases with altered PAM specificities. Nature 523481–485 (2015).

    Article PubMed PubMed Central Google Scholar

  • Rohland, N. & Reich, D. Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome Res. 22939–946 (2012).

    Article CAS PubMed PubMed Central Google Scholar

  • Kleinstiver, B. P. et al. Engineered CRISPR–Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nat. Biotechnol. 37276–282 (2019).

    Article CAS PubMed PubMed Central Google Scholar

  • Clement, K. et al. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat. Biotechnol. 37224–226 (2019).

    Article CAS PubMed PubMed Central Google Scholar

  • BBMap. SourceForge https://sourceforge.net/projects/bbmap (2022).

  • Iseli, C., Ambrosini, G., Bucher, P. & Jongeneel, C. V. Indexing strategies for rapid searches of short words in genome sequences. PLoS One 2e579 (2007).

    Article PubMed PubMed Central Google Scholar

  • Ferreira da Silva J., et al. Click editing enables programmable genome writing using DNA polymerases and HUH endonucleases. (Dataset. NCBI Sequence Read Archive); https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1015647 (2024).

  • Leave a Reply