Dark Light
CRISPRi-basically based mostly entirely circuits to protect an eye on gene expression in vegetation

Technology tamfitronics

  • Thompson , AJ et al. Ectopic expression of a tomato 9- .cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid. Plant J. 23363–374 (2000).

    Article CAS PubMed Google Scholar

  • Iuchi, S. et al. Regulations of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J. 27325–333 (2001).

    Article CAS PubMed Google Scholar

  • Feeney, M., Frigerio, L., Cui, Y. & Menassa, R. Following vegetative to embryonic mobile changes in leaves of Arabidopsis overexpressing LEAFY COTYLEDON2. Plant Physiol. 1621881–1896 (2013).

    Article CAS PubMed PubMed Central Google Scholar

  • Vanhercke, T. et al. Step changes in leaf oil accumulation by technique of iterative metabolic engineering. Metab. Eng. 39237–246 (2017).

    Article CAS PubMed Google Scholar

  • He, R. et al. Overexpression of 9-cis-epoxycarotenoid dioxygenase cisgene in grapevine will increase drought tolerance and ends in pleiotropic effects. Entrance. Plant Sci. 9970 (2018).

    Article PubMed PubMed Central Google Scholar

  • Hancock, J. F. A framework for assessing the threat of transgenic vegetation. Bioscience fifty three512–519 (2003).

    Article Google Scholar

  • Jaglo, Good enough. R. et al. Parts of the Arabidopsis C-repeat/dehydration-responsive part binding remark cool-response pathway are conserved in Brassica napus and other plant species. Plant Physiol. 127910–917 (2001).

    Article CAS PubMed PubMed Central Google Scholar

  • Brophy, J. A. N. & Voigt, C. A. Strategies of genetic circuit originate. Nat. Suggestions 11508–520 (2014).

    Article CAS PubMed PubMed Central Google Scholar

  • Kassaw, T. Good enough., Donayre-Torres, A. J., Antunes, M. S., Morey, Good enough. J. & Medford, J. I. Engineering synthetic regulatory circuits in vegetation. Plant Sci. 27313–22 (2018).

    Article CAS PubMed Google Scholar

  • Andres, J., Blomeier, T. & Zurbriggen, M. D. Synthetic switches and regulatory circuits in vegetation. Plant Physiol. 179862–884 (2019).

    Article CAS PubMed PubMed Central Google Scholar

  • de Lange, O., Klavins, E. & Nemhauser, J. Synthetic genetic circuits in prick vegetation. Curr. Opin. Biotechnol. 4916–22 (2018).

    Article PubMed Google Scholar

  • Xia, P.-F., Ling, H., Foo, J. L. & Chang, M. W. Synthetic genetic circuits for programmable biological functionalities. Biotechnol. Adv. 37107393 (2019).

    Article PubMed Google Scholar

  • Verbič, A., Praznik, A. & Jerala, R. A e book to the originate of synthetic gene networks in mammalian cells. FEBS J. 2885265–5288 (2021).

    Article PubMed Google Scholar

  • Chen, Y. et al. Genetic circuit originate automation for yeast. Nat. Microbiol. 51349–1360 (2020).

    Article CAS PubMed Google Scholar

  • Weber, W. & Fussenegger, M. Engineering of synthetic mammalian gene networks. Chem. Biol. 16287–297 (2009).

    Article CAS PubMed Google Scholar

  • Lienert, F., Lohmueller, J. J., Garg, A. & Silver, P. A. Synthetic biology in mammalian cells: subsequent technology be taught tools and therapeutics. Nat. Rev. Mol. Cell Biol. 1595–107 (2014).

    Article CAS PubMed PubMed Central Google Scholar

  • Mahfouz, M. M. et al. Focused transcriptional repression using a chimeric TALE–SRDX repressor protein. Plant Mol. Biol. 78311–321 (2012).

    Article CAS PubMed Google Scholar

  • Lowder, L. G., Paul, J. W. third & Qi, Y. Multiplexed transcriptional activation or repression in vegetation using CRISPR–dCas9-basically based mostly entirely programs. Suggestions Mol. Biol. 1629167–184 (2017).

    Article CAS PubMed Google Scholar

  • Hiratsu, Good enough., Matsui, Good enough., Koyama, T. & Ohme-Takagi, M. Dominant repression of goal genes by chimeric repressors that consist of the EAR motif, a repression area, in Arabidopsis. Plant J. 34733–739 (2003).

    Article CAS PubMed Google Scholar

  • Leydon, A. R. et al. Repression by the Arabidopsis TOPLESS corepressor requires association with the core mediator complex. eLife 10e66739 (2021).

    Article CAS PubMed PubMed Central Google Scholar

  • Leydon, A. R., Ramos Báez, R. & Nemhauser, J. L. A single helix repression area is functional across various eukaryotes. Proc. Natl Acad. Know USA 119e2206986119 (2022).

    Article CAS PubMed PubMed Central Google Scholar

  • Vazquez-Vilar, M. et al. GB3.0: a platform for plant bio-originate that connects functional DNA ingredients with associated biological files. Nucleic Acids Res. forty five2196–2209 (2017).

    CAS PubMed PubMed Central Google Scholar

  • Schaumberg, Good enough. A. et al. Quantitative characterization of genetic ingredients and circuits for plant synthetic biology. Nat. Suggestions 1394 (2015).

    Article PubMed Google Scholar

  • Brophy, J. A. N. et al. Synthetic genetic circuits as a come of reprogramming plant roots. Science 377747–751 (2022).

    Article CAS PubMed Google Scholar

  • Belcher, M. S. et al. Plot of orthogonal regulatory programs for modulating gene expression in vegetation. Nat. Chem. Biol. 16857–865 (2020).

    Article CAS PubMed Google Scholar

  • Bernabé-Orts, J. M. et al. A reminiscence switch for plant synthetic biology in line with the phage ϕC31 integration system. Nucleic Acids Res. forty eight3379–3394 (2020).

    Article PubMed PubMed Central Google Scholar

  • Lloyd, J. P. B. et al. Synthetic reminiscence circuits for right cell reprogramming in vegetation. Nat. Biotechnol. 401862–1872 (2022).

    Article CAS PubMed Google Scholar

  • Guiziou, S., Maranas, C. J., Chu, J. C. & Nemhauser, J. L. An integrase toolbox to memoir gene-expression at some level of plant kind. Nat. Common. 141844 (2023).

    Article CAS PubMed PubMed Central Google Scholar

  • Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-explicit protect an eye on of gene expression. Cell 1521173–1183 (2013).

    Article CAS PubMed PubMed Central Google Scholar

  • Gander, M. W., Vrana, J. D., Voje, W. E., Carothers, J. M. & Klavins, E. Digital common sense circuits in yeast with CRISPR–dCas9 NOR gates. Nat. Common. 815459 (2017).

    Article CAS PubMed PubMed Central Google Scholar

  • Kiani, S. et al. CRISPR transcriptional repression devices and layered circuits in mammalian cells. Nat. Suggestions 11723–726 (2014).

    Article CAS PubMed PubMed Central Google Scholar

  • Yeo, N. C. et al. An enhanced CRISPR repressor for focused mammalian gene regulation. Nat. Suggestions 15611–616 (2018).

    Article CAS PubMed PubMed Central Google Scholar

  • Nielsen, A. A. Good enough. & Voigt, C. A. Multi-enter CRISPR/Cas genetic circuits that interface host regulatory networks. Mol. Syst. Biol. 10763 (2014).

    Article PubMed PubMed Central Google Scholar

  • Santos-Moreno, J., Tasiudi, E., Stelling, J. & Schaerli, Y. Multistable and dynamic CRISPRi-basically based mostly entirely synthetic circuits. Nat. Common. 112746 (2020).

    Article CAS PubMed PubMed Central Google Scholar

  • Kim, H., Bojar, D. & Fussenegger, M. A CRISPR/Cas9-basically based mostly entirely central processing unit to program complex common sense computation in human cells. Proc. Natl Acad. Know USA 1167214–7219 (2019).

    Article CAS PubMed PubMed Central Google Scholar

  • Jones, D. L. et al. Kinetics of dCas9 goal search in Escherichia coli. Science 3571420–1424 (2017).

    Article CAS PubMed PubMed Central Google Scholar

  • Martens, Good enough. J. A. et al. Visualisation of dCas9 goal search in vivo using an launch-microscopy framework. Nat. Common. 103552 (2019).

    Article PubMed PubMed Central Google Scholar

  • Santos-Moreno, J. & Schaerli, Y. CRISPR-basically based mostly entirely gene expression protect an eye on for synthetic gene circuits. Biochem. Soc. Trans. forty eight1979–1993 (2020).

    Article CAS PubMed PubMed Central Google Scholar

  • Lowder, L. G. et al. A CRISPR/Cas9 toolbox for multiplexed plant genome enhancing and transcriptional regulation. Plant Physiol. 169971–985 (2015).

    Article PubMed PubMed Central Google Scholar

  • Piatek, A. et al. RNA-guided transcriptional regulation in planta by technique of synthetic dCas9-basically based mostly entirely transcription components. Plant Biotechnol. J. 13578–589 (2015).

    Article CAS PubMed Google Scholar

  • Vazquez-Vilar, M. et al. A modular toolbox for gRNA–Cas9 genome engineering in vegetation in line with the GoldenBraid long-established. Plant Suggestions 1210 (2016).

    Article PubMed PubMed Central Google Scholar

  • Vazquez-Vilar, M. et al. The GB4.0 platform, an all-in-one instrument for CRISPR/Cas-basically based mostly entirely multiplex genome engineering in vegetation. Entrance. Plant Sci. 12689937 (2021).

    Article PubMed PubMed Central Google Scholar

  • Khakhar, A., Leydon, A. R., Lemmex, A. C., Klavins, E. & Nemhauser, J. L. Synthetic hormone-responsive transcription components can video display and re-program plant kind. eLife 7e34702 (2018).

    Article PubMed PubMed Central Google Scholar

  • Han, Y.-J., Kim, Y.-M., Hwang, O.-J. & Kim, J.-I. Characterization of a minute constitutive promoter from Arabidopsis translationally managed tumor protein (AtTCTP) gene for plant transformation. Plant Cell Fetch. 34265–275 (2015).

    Article CAS PubMed Google Scholar

  • Somssich, M. A transient history of the CaMV 35S promoter. Preprint at PeerJ https://doi.org/10.7287/peerj.preprints.27096v3 (2019).

  • Yilmaz, A. et al. AGRIS: the Arabidopsis Gene Regulatory Data Server, an update. Nucleic Acids Res. 39D1118–D1122 (2011).

    Article CAS PubMed Google Scholar

  • Davuluri, RV et al. AGRIS: Arabidopsis gene regulatory knowledge server, an knowledge helpful resource of Arabidopsis cis-regulatory ingredients and transcription components. BMC Bioinformatics 425 (2003).

    Article PubMed PubMed Central Google Scholar

  • Palaniswamy, S. Good enough. et al. AGRIS and AtRegNet. A platform to link cis-regulatory ingredients and transcription components into regulatory networks. Plant Physiol. 140818–829 (2006).

    Article CAS PubMed PubMed Central Google Scholar

  • Vancanneyt, G., Schmidt, R., O’Connor-Sanchez, A., Willmitzer, L. & Rocha-Sosa, M. Construction of an intron-containing marker gene: splicing of the intron in transgenic vegetation and its exercise in monitoring early events in Agrobacterium-mediated plant transformation. Mol. Gen. Genet. 220245–250 (1990).

    Article CAS PubMed Google Scholar

  • Gao, Y. & Zhao, Y. Self-processing of ribozyme-flanked RNAs into e book RNAs in vitro and in vivo for CRISPR-mediated genome enhancing. J. Integr. Plant Biol. 56343–349 (2014).

    Article CAS PubMed Google Scholar

  • Cermak, T. et al. A multi-cause toolkit to allow superior genome engineering in vegetation. Plant Cell 291196–1217 (2017).

    Article CAS PubMed PubMed Central Google Scholar

  • Xie, Good enough., Minkenberg, B. & Yang, Y. Boosting CRISPR/Cas9 multiplex enhancing functionality with the endogenous tRNA-processing system. Proc. Natl Acad. Know USA 1123570–3575 (2015).

    Article CAS PubMed PubMed Central Google Scholar

  • Haurwitz, R. E., Jinek, M., Wiedenheft, B., Zhou, Good enough. & Doudna, J. A. Sequence- and structure-explicit RNA processing by a CRISPR endonuclease. Science 3291355–1358 (2010).

    Article CAS PubMed PubMed Central Google Scholar

  • Nissim, L., Perli, S. D., Fridkin, A., Perez-Pinera, P. & Lu, T. Good enough. Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells. Mol. Cell 54698–710 (2014).

    Article CAS PubMed PubMed Central Google Scholar

  • Lodish, H., et al. Molecular Cell Biology (W. H. Freeman, 2000).

  • Schramm, L. & Hernandez, N. Recruitment of RNA polymerase III to its goal promoters. Genes Dev. 162593–2620 (2002).

    Article CAS PubMed Google Scholar

  • Sherf, B. A., Navarro, S. L., Hannah, R. R. & Wood, Good enough. V. Twin-luciferase TM reporter assay: a elaborate co-reporter technology integrating firefly and On Ren luciferase assays. Promega Notes 572–8 (1996).

    Google Scholar

  • McNabb, D. S., Reed, R. & Marciniak, R. A. Twin luciferase assay system for rapid review of gene expression in Saccharomyces cerevisiae. Eukaryot. Cell 41539–1549 (2005).

    Article CAS PubMed PubMed Central Google Scholar

  • Gilbert, L. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154442–451 (2013).

    Article CAS PubMed PubMed Central Google Scholar

  • Gilbert, L. A. et al. Genome-scale CRISPR-mediated protect an eye on of gene repression and activation. Cell 159647–661 (2014).

    Article CAS PubMed PubMed Central Google Scholar

  • Thakore, P. I., Shaded, J. B., Hilton, I. B. & Gersbach, C. A. Bettering the epigenome: applied sciences for programmable transcription and epigenetic modulation. Nat. Suggestions 13127–137 (2016).

    Article CAS PubMed PubMed Central Google Scholar

  • Craft, J. et al. Fresh pOp/LhG4 vectors for stringent glucocorticoid-dependent transgene expression in Arabidopsis. Plant J. 41899–918 (2005).

    Article CAS PubMed Google Scholar

  • Takahashi, T., Naito, S. & Komeda, Y. The Arabidopsis HSP18.2 promoter/GUS gene fusion in transgenic Arabidopsis vegetation: a worthy instrument for the isolation of regulatory mutants of the heat‐shock response. Plant J. 2751–761 (1992).

    Article CAS Google Scholar

  • Horstmann, V., Huether, C. M., Jost, W., Reski, R. & Decker, E. L. Quantitative promoter diagnosis in Physcomitrella patent: a characteristic of plant vectors activating gene expression within three orders of magnitude. BMC Biotechnol. 413 (2004).

    Article PubMed PubMed Central Google Scholar

  • Gaber, R. et al. Designable DNA-binding domains allow construction of common sense circuits in mammalian cells. Nat. Chem. Biol. 10203–208 (2014).

    Article CAS PubMed Google Scholar

  • Leben, Good enough. et al. Binding of the transcription activator-cherish effector augments transcriptional regulation by every other transcription remark. Nucleic Acids Res. 506562–6574 (2022).

    Article CAS PubMed PubMed Central Google Scholar

  • Tompa, M. et al. Assessing computational tools for the discovery of transcription remark binding sites. Nat. Biotechnol. 23137–144 (2005).

    Article CAS PubMed Google Scholar

  • Jiang, C. & Pugh, B. F. Nucleosome positioning and gene regulation: advances via genomics. Nat. Rev. Genet. 10161–172 (2009).

    Article CAS PubMed PubMed Central Google Scholar

  • Heard, D. J., Kiss, T. & Filipowicz, W. Both Arabidopsis TATA binding protein (TBP) isoforms are functionally the same in RNA polymerase II and III transcription in plant cells: proof for gene-explicit changes in DNA binding specificity of TBP. EMBO J. 123519–3528 (1993).

    Article CAS PubMed PubMed Central Google Scholar

  • Mukumoto, F., Hirose, S., Imaseki, H. & Yamazaki, Good enough. DNA sequence requirement of a TATA part-binding protein from Arabidopsis for transcription in vitro. Plant Mol. Biol. 23995–1003 (1993).

    Article CAS PubMed Google Scholar

  • Gorochowski, T. E. et al. Genetic circuit characterization and debugging using RNA-seq. Mol. Syst. Biol. 13952 (2017).

    Article PubMed PubMed Central Google Scholar

  • Ohta, M., Matsui, Good enough., Hiratsu, Good enough., Shinshi, H. & Ohme-Takagi, M. Repression domains of sophistication II ERF transcriptional repressors share an needed motif for active repression. Plant Cell 131959–1968 (2001).

    Article CAS PubMed PubMed Central Google Scholar

  • Kagale, S. & Rozwadowski, Good enough. EAR motif-mediated transcriptional repression in vegetation: an underlying mechanism for epigenetic regulation of gene expression. Epigenetics 6141–146 (2011).

    Article CAS PubMed PubMed Central Google Scholar

  • Yang, E. J. Y. & Nemhauser, J. L. Building a pipeline to name and engineer constitutive and repressible promoters. Quant. Plant Biol. 4e12 (2023).

    Article PubMed PubMed Central Google Scholar

  • Tas, H., Grozinger, L., Stoof, R., de Lorenzo, V. & Goñi-Moreno, Á. Contextual dependencies lengthen the re-usability of genetic inverters. Nat. Common. 12355 (2021).

    Article CAS PubMed PubMed Central Google Scholar

  • Gibson, D. G. et al. Enzymatic meeting of DNA molecules up to several hundred kilobases. Nat. Suggestions 6343–345 (2009).

    Article CAS PubMed Google Scholar

  • Engler, C. et al. A Golden Gate modular cloning toolbox for vegetation. ACS Synth. Biol. 3839–843 (2014).

    Article CAS PubMed Google Scholar

  • Pollak, B. et al. Universal loop meeting: launch, atmosphere friendly and homely-kingdom DNA fabrication. Synth. Biol. 5ysaa001 (2020).

    Article CAS Google Scholar

  • Khan, M. A. et al. CRISPRi-basically based mostly entirely circuits to protect an eye on gene expression in vegetation. Zenodo https://doi.org/10.5281/zenodo.11108565 (2024).

  • Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, Good enough. E. Unicycler: resolving bacterial genome assemblies from rapid and lengthy sequencing reads. PLoS Comput. Biol. 13e1005595 (2017).

    Article PubMed PubMed Central Google Scholar

  • Langmead, B. & Salzberg, S. L. Immediate gapped-read alignment with Bowtie 2. Nat. Suggestions 9357–359 (2012).

    Article CAS PubMed PubMed Central Google Scholar

  • Wu, F.-H. et al. Tape–Arabidopsis Sandwich—a more uncomplicated Arabidopsis protoplast isolation formula. Plant Suggestions 516 (2009).

    Article PubMed PubMed Central Google Scholar

  • Cove, D. J. et al. Isolation and regeneration of protoplasts of the moss Physcomitrella patent. Chilly Spring Harb. Protoc. https://doi.org/10.1101/pdb.prot5140 (2009).

    Article PubMed Google Scholar

  • Cove, D. J. et al. Transformation of the moss Physcomitrella patent using relate DNA uptake by protoplasts. Chilly Spring Harb. Protoc. https://doi.org/10.1101/pdb.prot5143 (2009).

    Article PubMed Google Scholar

  • Ganguly, D. R., Tyrrell, R. & Arndell, T. Protoplast isolation and PEG-mediated transformation. Protocols.io https://doi.org/10.17504/protocols.io.36wgqwd5gk57/v2 ( 2022).

  • Clough, S. J. & Bent, A. F. Floral dip: a simplified formula for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16735–743 (1998).

    Article CAS PubMed Google Scholar

  • Logemann, E., Birkenbihl, R. P., Ülker, B. & Somssich, I. E. An improved formula for making ready Agrobacterium cells that simplifies the Arabidopsis transformation protocol. Plant Suggestions 216 (2006).

    Article PubMed PubMed Central Google Scholar

  • Leave a Reply