Technology tamfitronics
Thompson , AJ et al. Ectopic expression of a tomato 9- .cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid. Plant J. 23363–374 (2000).
Iuchi, S. et al. Regulations of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J. 27325–333 (2001).
Feeney, M., Frigerio, L., Cui, Y. & Menassa, R. Following vegetative to embryonic mobile changes in leaves of Arabidopsis overexpressing LEAFY COTYLEDON2. Plant Physiol. 1621881–1896 (2013).
Vanhercke, T. et al. Step changes in leaf oil accumulation by technique of iterative metabolic engineering. Metab. Eng. 39237–246 (2017).
He, R. et al. Overexpression of 9-cis-epoxycarotenoid dioxygenase cisgene in grapevine will increase drought tolerance and ends in pleiotropic effects. Entrance. Plant Sci. 9970 (2018).
Hancock, J. F. A framework for assessing the threat of transgenic vegetation. Bioscience fifty three512–519 (2003).
Jaglo, Good enough. R. et al. Parts of the Arabidopsis C-repeat/dehydration-responsive part binding remark cool-response pathway are conserved in Brassica napus and other plant species. Plant Physiol. 127910–917 (2001).
Brophy, J. A. N. & Voigt, C. A. Strategies of genetic circuit originate. Nat. Suggestions 11508–520 (2014).
Kassaw, T. Good enough., Donayre-Torres, A. J., Antunes, M. S., Morey, Good enough. J. & Medford, J. I. Engineering synthetic regulatory circuits in vegetation. Plant Sci. 27313–22 (2018).
Andres, J., Blomeier, T. & Zurbriggen, M. D. Synthetic switches and regulatory circuits in vegetation. Plant Physiol. 179862–884 (2019).
de Lange, O., Klavins, E. & Nemhauser, J. Synthetic genetic circuits in prick vegetation. Curr. Opin. Biotechnol. 4916–22 (2018).
Xia, P.-F., Ling, H., Foo, J. L. & Chang, M. W. Synthetic genetic circuits for programmable biological functionalities. Biotechnol. Adv. 37107393 (2019).
Verbič, A., Praznik, A. & Jerala, R. A e book to the originate of synthetic gene networks in mammalian cells. FEBS J. 2885265–5288 (2021).
Chen, Y. et al. Genetic circuit originate automation for yeast. Nat. Microbiol. 51349–1360 (2020).
Weber, W. & Fussenegger, M. Engineering of synthetic mammalian gene networks. Chem. Biol. 16287–297 (2009).
Lienert, F., Lohmueller, J. J., Garg, A. & Silver, P. A. Synthetic biology in mammalian cells: subsequent technology be taught tools and therapeutics. Nat. Rev. Mol. Cell Biol. 1595–107 (2014).
Mahfouz, M. M. et al. Focused transcriptional repression using a chimeric TALE–SRDX repressor protein. Plant Mol. Biol. 78311–321 (2012).
Lowder, L. G., Paul, J. W. third & Qi, Y. Multiplexed transcriptional activation or repression in vegetation using CRISPR–dCas9-basically based mostly entirely programs. Suggestions Mol. Biol. 1629167–184 (2017).
Hiratsu, Good enough., Matsui, Good enough., Koyama, T. & Ohme-Takagi, M. Dominant repression of goal genes by chimeric repressors that consist of the EAR motif, a repression area, in Arabidopsis. Plant J. 34733–739 (2003).
Leydon, A. R. et al. Repression by the Arabidopsis TOPLESS corepressor requires association with the core mediator complex. eLife 10e66739 (2021).
Leydon, A. R., Ramos Báez, R. & Nemhauser, J. L. A single helix repression area is functional across various eukaryotes. Proc. Natl Acad. Know USA 119e2206986119 (2022).
Vazquez-Vilar, M. et al. GB3.0: a platform for plant bio-originate that connects functional DNA ingredients with associated biological files. Nucleic Acids Res. forty five2196–2209 (2017).
Schaumberg, Good enough. A. et al. Quantitative characterization of genetic ingredients and circuits for plant synthetic biology. Nat. Suggestions 1394 (2015).
Brophy, J. A. N. et al. Synthetic genetic circuits as a come of reprogramming plant roots. Science 377747–751 (2022).
Belcher, M. S. et al. Plot of orthogonal regulatory programs for modulating gene expression in vegetation. Nat. Chem. Biol. 16857–865 (2020).
Bernabé-Orts, J. M. et al. A reminiscence switch for plant synthetic biology in line with the phage ϕC31 integration system. Nucleic Acids Res. forty eight3379–3394 (2020).
Lloyd, J. P. B. et al. Synthetic reminiscence circuits for right cell reprogramming in vegetation. Nat. Biotechnol. 401862–1872 (2022).
Guiziou, S., Maranas, C. J., Chu, J. C. & Nemhauser, J. L. An integrase toolbox to memoir gene-expression at some level of plant kind. Nat. Common. 141844 (2023).
Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-explicit protect an eye on of gene expression. Cell 1521173–1183 (2013).
Gander, M. W., Vrana, J. D., Voje, W. E., Carothers, J. M. & Klavins, E. Digital common sense circuits in yeast with CRISPR–dCas9 NOR gates. Nat. Common. 815459 (2017).
Kiani, S. et al. CRISPR transcriptional repression devices and layered circuits in mammalian cells. Nat. Suggestions 11723–726 (2014).
Yeo, N. C. et al. An enhanced CRISPR repressor for focused mammalian gene regulation. Nat. Suggestions 15611–616 (2018).
Nielsen, A. A. Good enough. & Voigt, C. A. Multi-enter CRISPR/Cas genetic circuits that interface host regulatory networks. Mol. Syst. Biol. 10763 (2014).
Santos-Moreno, J., Tasiudi, E., Stelling, J. & Schaerli, Y. Multistable and dynamic CRISPRi-basically based mostly entirely synthetic circuits. Nat. Common. 112746 (2020).
Kim, H., Bojar, D. & Fussenegger, M. A CRISPR/Cas9-basically based mostly entirely central processing unit to program complex common sense computation in human cells. Proc. Natl Acad. Know USA 1167214–7219 (2019).
Jones, D. L. et al. Kinetics of dCas9 goal search in Escherichia coli. Science 3571420–1424 (2017).
Martens, Good enough. J. A. et al. Visualisation of dCas9 goal search in vivo using an launch-microscopy framework. Nat. Common. 103552 (2019).
Santos-Moreno, J. & Schaerli, Y. CRISPR-basically based mostly entirely gene expression protect an eye on for synthetic gene circuits. Biochem. Soc. Trans. forty eight1979–1993 (2020).
Lowder, L. G. et al. A CRISPR/Cas9 toolbox for multiplexed plant genome enhancing and transcriptional regulation. Plant Physiol. 169971–985 (2015).
Piatek, A. et al. RNA-guided transcriptional regulation in planta by technique of synthetic dCas9-basically based mostly entirely transcription components. Plant Biotechnol. J. 13578–589 (2015).
Vazquez-Vilar, M. et al. A modular toolbox for gRNA–Cas9 genome engineering in vegetation in line with the GoldenBraid long-established. Plant Suggestions 1210 (2016).
Vazquez-Vilar, M. et al. The GB4.0 platform, an all-in-one instrument for CRISPR/Cas-basically based mostly entirely multiplex genome engineering in vegetation. Entrance. Plant Sci. 12689937 (2021).
Khakhar, A., Leydon, A. R., Lemmex, A. C., Klavins, E. & Nemhauser, J. L. Synthetic hormone-responsive transcription components can video display and re-program plant kind. eLife 7e34702 (2018).
Han, Y.-J., Kim, Y.-M., Hwang, O.-J. & Kim, J.-I. Characterization of a minute constitutive promoter from Arabidopsis translationally managed tumor protein (AtTCTP) gene for plant transformation. Plant Cell Fetch. 34265–275 (2015).
Somssich, M. A transient history of the CaMV 35S promoter. Preprint at PeerJ https://doi.org/10.7287/peerj.preprints.27096v3 (2019).
Yilmaz, A. et al. AGRIS: the Arabidopsis Gene Regulatory Data Server, an update. Nucleic Acids Res. 39D1118–D1122 (2011).
Davuluri, RV et al. AGRIS: Arabidopsis gene regulatory knowledge server, an knowledge helpful resource of Arabidopsis cis-regulatory ingredients and transcription components. BMC Bioinformatics 425 (2003).
Palaniswamy, S. Good enough. et al. AGRIS and AtRegNet. A platform to link cis-regulatory ingredients and transcription components into regulatory networks. Plant Physiol. 140818–829 (2006).
Vancanneyt, G., Schmidt, R., O’Connor-Sanchez, A., Willmitzer, L. & Rocha-Sosa, M. Construction of an intron-containing marker gene: splicing of the intron in transgenic vegetation and its exercise in monitoring early events in Agrobacterium-mediated plant transformation. Mol. Gen. Genet. 220245–250 (1990).
Gao, Y. & Zhao, Y. Self-processing of ribozyme-flanked RNAs into e book RNAs in vitro and in vivo for CRISPR-mediated genome enhancing. J. Integr. Plant Biol. 56343–349 (2014).
Cermak, T. et al. A multi-cause toolkit to allow superior genome engineering in vegetation. Plant Cell 291196–1217 (2017).
Xie, Good enough., Minkenberg, B. & Yang, Y. Boosting CRISPR/Cas9 multiplex enhancing functionality with the endogenous tRNA-processing system. Proc. Natl Acad. Know USA 1123570–3575 (2015).
Haurwitz, R. E., Jinek, M., Wiedenheft, B., Zhou, Good enough. & Doudna, J. A. Sequence- and structure-explicit RNA processing by a CRISPR endonuclease. Science 3291355–1358 (2010).
Nissim, L., Perli, S. D., Fridkin, A., Perez-Pinera, P. & Lu, T. Good enough. Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells. Mol. Cell 54698–710 (2014).
Lodish, H., et al. Molecular Cell Biology (W. H. Freeman, 2000).
Schramm, L. & Hernandez, N. Recruitment of RNA polymerase III to its goal promoters. Genes Dev. 162593–2620 (2002).
Sherf, B. A., Navarro, S. L., Hannah, R. R. & Wood, Good enough. V. Twin-luciferase TM reporter assay: a elaborate co-reporter technology integrating firefly and On Ren luciferase assays. Promega Notes 572–8 (1996).
McNabb, D. S., Reed, R. & Marciniak, R. A. Twin luciferase assay system for rapid review of gene expression in Saccharomyces cerevisiae. Eukaryot. Cell 41539–1549 (2005).
Gilbert, L. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154442–451 (2013).
Gilbert, L. A. et al. Genome-scale CRISPR-mediated protect an eye on of gene repression and activation. Cell 159647–661 (2014).
Thakore, P. I., Shaded, J. B., Hilton, I. B. & Gersbach, C. A. Bettering the epigenome: applied sciences for programmable transcription and epigenetic modulation. Nat. Suggestions 13127–137 (2016).
Craft, J. et al. Fresh pOp/LhG4 vectors for stringent glucocorticoid-dependent transgene expression in Arabidopsis. Plant J. 41899–918 (2005).
Takahashi, T., Naito, S. & Komeda, Y. The Arabidopsis HSP18.2 promoter/GUS gene fusion in transgenic Arabidopsis vegetation: a worthy instrument for the isolation of regulatory mutants of the heat‐shock response. Plant J. 2751–761 (1992).
Horstmann, V., Huether, C. M., Jost, W., Reski, R. & Decker, E. L. Quantitative promoter diagnosis in Physcomitrella patent: a characteristic of plant vectors activating gene expression within three orders of magnitude. BMC Biotechnol. 413 (2004).
Gaber, R. et al. Designable DNA-binding domains allow construction of common sense circuits in mammalian cells. Nat. Chem. Biol. 10203–208 (2014).
Leben, Good enough. et al. Binding of the transcription activator-cherish effector augments transcriptional regulation by every other transcription remark. Nucleic Acids Res. 506562–6574 (2022).
Tompa, M. et al. Assessing computational tools for the discovery of transcription remark binding sites. Nat. Biotechnol. 23137–144 (2005).
Jiang, C. & Pugh, B. F. Nucleosome positioning and gene regulation: advances via genomics. Nat. Rev. Genet. 10161–172 (2009).
Heard, D. J., Kiss, T. & Filipowicz, W. Both Arabidopsis TATA binding protein (TBP) isoforms are functionally the same in RNA polymerase II and III transcription in plant cells: proof for gene-explicit changes in DNA binding specificity of TBP. EMBO J. 123519–3528 (1993).
Mukumoto, F., Hirose, S., Imaseki, H. & Yamazaki, Good enough. DNA sequence requirement of a TATA part-binding protein from Arabidopsis for transcription in vitro. Plant Mol. Biol. 23995–1003 (1993).
Gorochowski, T. E. et al. Genetic circuit characterization and debugging using RNA-seq. Mol. Syst. Biol. 13952 (2017).
Ohta, M., Matsui, Good enough., Hiratsu, Good enough., Shinshi, H. & Ohme-Takagi, M. Repression domains of sophistication II ERF transcriptional repressors share an needed motif for active repression. Plant Cell 131959–1968 (2001).
Kagale, S. & Rozwadowski, Good enough. EAR motif-mediated transcriptional repression in vegetation: an underlying mechanism for epigenetic regulation of gene expression. Epigenetics 6141–146 (2011).
Yang, E. J. Y. & Nemhauser, J. L. Building a pipeline to name and engineer constitutive and repressible promoters. Quant. Plant Biol. 4e12 (2023).
Tas, H., Grozinger, L., Stoof, R., de Lorenzo, V. & Goñi-Moreno, Á. Contextual dependencies lengthen the re-usability of genetic inverters. Nat. Common. 12355 (2021).
Gibson, D. G. et al. Enzymatic meeting of DNA molecules up to several hundred kilobases. Nat. Suggestions 6343–345 (2009).
Engler, C. et al. A Golden Gate modular cloning toolbox for vegetation. ACS Synth. Biol. 3839–843 (2014).
Pollak, B. et al. Universal loop meeting: launch, atmosphere friendly and homely-kingdom DNA fabrication. Synth. Biol. 5ysaa001 (2020).
Khan, M. A. et al. CRISPRi-basically based mostly entirely circuits to protect an eye on gene expression in vegetation. Zenodo https://doi.org/10.5281/zenodo.11108565 (2024).
Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, Good enough. E. Unicycler: resolving bacterial genome assemblies from rapid and lengthy sequencing reads. PLoS Comput. Biol. 13e1005595 (2017).
Langmead, B. & Salzberg, S. L. Immediate gapped-read alignment with Bowtie 2. Nat. Suggestions 9357–359 (2012).
Wu, F.-H. et al. Tape–Arabidopsis Sandwich—a more uncomplicated Arabidopsis protoplast isolation formula. Plant Suggestions 516 (2009).
Cove, D. J. et al. Isolation and regeneration of protoplasts of the moss Physcomitrella patent. Chilly Spring Harb. Protoc. https://doi.org/10.1101/pdb.prot5140 (2009).
Cove, D. J. et al. Transformation of the moss Physcomitrella patent using relate DNA uptake by protoplasts. Chilly Spring Harb. Protoc. https://doi.org/10.1101/pdb.prot5143 (2009).
Ganguly, D. R., Tyrrell, R. & Arndell, T. Protoplast isolation and PEG-mediated transformation. Protocols.io https://doi.org/10.17504/protocols.io.36wgqwd5gk57/v2 ( 2022).
Clough, S. J. & Bent, A. F. Floral dip: a simplified formula for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16735–743 (1998).
Logemann, E., Birkenbihl, R. P., Ülker, B. & Somssich, I. E. An improved formula for making ready Agrobacterium cells that simplifies the Arabidopsis transformation protocol. Plant Suggestions 216 (2006).