Science & Technology

Large-scale discovery of chromatin dysregulation induced by oncofusions and other protein-coding variants

Large-scale discovery of chromatin dysregulation induced by oncofusions and other protein-coding variants

Technology tamfitronics

  • Przybyla, L. & Gilbert, L. A. A new era in functional genomics screens. Night. Rev. The gene. 2389–103 (2021).

    Article PubMed Google Scholar

  • Findlay, G. M. Linking genome variants to disease: scalable approaches to test the functional impact of human mutations. Hum. Mol. Genet. 30R187–R197 (2021).

    Article CAS PubMed PubMed Central Google Scholar

  • Findlay, G. M. et al. Accurate classification of BRCA1 variants with saturation genome editing. Nature 562217–222 (2018).

    Article CAS PubMed PubMed Central Google Scholar

  • Tewhey, R. et al. Direct identification of hundreds of expression-modulating variants using a multiplexed reporter assay. Cell 1651519–1529 (2016).

    Article CAS PubMed PubMed Central Google Scholar

  • van Arensbergen, J. et al. High-throughput identification of human SNPs affecting regulatory element activity. Nat. Genet. 511160–1169 (2019).

    Article PubMed PubMed Central Google Scholar

  • Doench, J. G. Am I ready for CRISPR? A user’s guide to genetic screens. Night. Rev. The gene. 1967–80 (2018).

    Article CAS PubMed Google Scholar

  • Fowler, D. M. & Fields, S. Deep mutational scanning: a new style of protein science. Nat. Methods 11801–807 (2014).

    Article CAS PubMed PubMed Central Google Scholar

  • Replogle, J. M. et al. Combinatorial single-cell CRISPR screens by direct guide RNA capture and targeted sequencing. Nat. Biotechnol. 38954–961 (2020).

    Article CAS PubMed PubMed Central Google Scholar

  • Adamson, B. et al. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 1671867–1882 (2016).

    Article CAS PubMed PubMed Central Google Scholar

  • Dixit, A. et al. Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 1671853–1866 (2016).

    Article CAS PubMed PubMed Central Google Scholar

  • Datlinger, P. et al. Pooled CRISPR screening with single-cell transcriptome readout. Nat. Methods 14297–301 (2017).

    Article CAS PubMed PubMed Central Google Scholar

  • Kim, H. S. et al. Direct measurement of engineered cancer mutations and their transcriptional phenotypes in single cells. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01949-8 (2023).

  • Ursu, O. et al. Massively parallel phenotyping of coding variants in cancer with Perturb-seq. Nat. Biotechnol. 40896–905 (2022).

    Article CAS PubMed Google Scholar

  • Pierce, S. E., Granja, J. M. & Greenleaf, W. J. High-throughput single-cell chromatin accessibility CRISPR screens enable unbiased identification of regulatory networks in cancer. Nat. Commun. 122969 (2021).

    Article CAS PubMed PubMed Central Google Scholar

  • Mertens, F., Johansson, B., Fioretos, T. & Mitelman, F. The emerging complexity of gene fusions in cancer. Night. Rev. Cancer 15371–381 (2015).

    Article CAS PubMed Google Scholar

  • Mertens, F., Antonescu, C. R. & Mitelman, F. Gene fusions in soft tissue tumors: recurrent and overlapping pathogenetic themes. Genes Chromosomes Cancer 55291–310 (2016).

    Article CAS PubMed Google Scholar

  • Gryder, B. E. et al. PAX3–FOXO1 establishes myogenic super enhancers and confers BET bromodomain vulnerability. Cancer Discov. 7884–899 (2017).

    Article CAS PubMed PubMed Central Google Scholar

  • Riggi, N. et al. EWS-FLI1 utilizes divergent chromatin remodeling mechanisms to directly activate or repress enhancer elements in Ewing sarcoma. Cancer Cell 26668–681 (2014).

    Article CAS PubMed PubMed Central Google Scholar

  • Boulay, G. et al. Cancer-specific retargeting of BAF complexes by a prion-like domain. Cell 171163–178 (2017).

    Article CAS PubMed PubMed Central Google Scholar

  • Jang, Y. E. et al. ChimerDB 4.0: an updated and expanded database of fusion genes. Nucleic Acids Res. 48D817–D824 (2020).

    CAS PubMed Google Scholar

  • Sweeney, N. P. & Vink, C. A. The impact of lentiviral vector genome size and producer cell genomic to gag-pol mRNA ratios on packaging efficiency and titre. Mol. Ther. Methods Clin. Dev. 21574–584 (2021).

    Article CAS PubMed PubMed Central Google Scholar

  • Milone, M. C. & O’Doherty, U. Clinical use of lentiviral vectors. Leukemia 321529–1541 (2018).

    Article CAS PubMed PubMed Central Google Scholar

  • Xie, S., Cooley, A., Armendariz, D., Zhou, P. & Hon, G. C. Frequent sgRNA-barcode recombination in single-cell perturbation assays. PLoS ONE 13e0198635 (2018).

    Article PubMed PubMed Central Google Scholar

  • Adamson, B., Norman, T. M., Jost, M. & Weissman, J. S. Approaches to maximize sgRNA-barcode coupling in Perturb-seq screens. Preprint at bioRxiv https://doi.org/10.1101/298349 (2018).

  • Feldman, D., Singh, A., Garrity, A. J. & Blainey, P. C. Lentiviral co-packaging mitigates the effects of intermolecular recombination and multiple integrations in pooled genetic screens. Preprint at bioRxiv https://doi.org/10.1101/262121 (2018).

  • Parekh, U. et al. Mapping cellular reprogramming via pooled overexpression screens with paired fitness and single-cell RNA-sequencing readout. Cell Syst. 7548–555 (2018).

    Article CAS PubMed PubMed Central Google Scholar

  • Hill, A. J. et al. On the design of CRISPR-based single-cell molecular screens. Nat. Methods 15271–274 (2018).

    Article CAS PubMed PubMed Central Google Scholar

  • Matreyek, K. A., Stephany, J. J., Chiasson, M. A., Hasle, N. & Fowler, D. M. An improved platform for functional assessment of large protein libraries in mammalian cells. Nucleic Acids Res. 48e1 (2020).

    CAS PubMed Google Scholar

  • Sánchez-Molina, S. et al. RING1B recruits EWSR1-FLI1 and cooperates in the remodeling of chromatin necessary for Ewing sarcoma tumorigenesis. Sci. Adv. 6eaba3058 (2020).

    Article PubMed PubMed Central Google Scholar

  • Deng, Q. et al. Oncofusion-driven de novo enhancer assembly promotes malignancy in Ewing sarcoma via aberrant expression of the stereociliary protein LOXHD1. Cell Rep. 39110971 (2022).

    Article CAS PubMed PubMed Central Google Scholar

  • Manceau, L. et al. Divergent transcriptional and transforming properties of PAX3-FOXO1 and PAX7-FOXO1 paralogs. PLoS Genet. 18e1009782 (2022).

    Article CAS PubMed PubMed Central Google Scholar

  • Orth, M. F. et al. Systematic multi-omics cell line profiling uncovers principles of Ewing sarcoma fusion oncogene-mediated gene regulation. Cell Rep. 41111761 (2022).

    Article CAS PubMed PubMed Central Google Scholar

  • Tate, J. G. et al. COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res. 47D941–D947 (2019).

    Article CAS PubMed Google Scholar

  • Granja, J. M. et al. ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis. Nat. Genet. 53403–411 (2021).

    Article CAS PubMed PubMed Central Google Scholar

  • Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 1843573–3587 (2021).

    Article CAS PubMed PubMed Central Google Scholar

  • Jost, M. et al. Titrating gene expression using libraries of systematically attenuated CRISPR guide RNAs. Nat. Biotechnol. 38355–364 (2020).

    Article CAS PubMed PubMed Central Google Scholar

  • Zhang, Y. et al. Model-based analysis of ChIP-seq (MACS). Genome Biol. 9R137 (2008).

    Article PubMed PubMed Central Google Scholar

  • Sunkel, B. D. et al. Evidence of pioneer factor activity of an oncogenic fusion transcription factor. iScience 24102867 (2021).

    Article CAS PubMed PubMed Central Google Scholar

  • AACR Project GENIE Consortium AACR Project GENIE: powering precision medicine through an international consortium. Cancer Discov. 7818–831 (2017).

    Article Google Scholar

  • Chang, W.-I. et al. Molecular targets for novel therapeutics in pediatric fusion-positive non-CNS solid tumors. Front. Pharmacol. 12747895 (2022).

    Article PubMed PubMed Central Google Scholar

  • Perry, J. A., Seong, B. K. A. & Stegmaier, K. Biology and therapy of dominant fusion oncoproteins involving transcription factor and chromatin regulators in sarcomas. Annu. Rev. Cancer Biol. 3299–321 (2019).

    Article Google Scholar

  • Möller, E. et al. EWSR1-ATF1 dependent 3D connectivity regulates oncogenic and differentiation programs in clear cell sarcoma. Nat. Commun. 132267 (2022).

    Article PubMed PubMed Central Google Scholar

  • Johnson, K. M. et al. Role for the EWS domain of EWS/FLI in binding GGAA-microsatellites required for Ewing sarcoma anchorage independent growth. Proc. Natl Acad. Sci. USA 1149870–9875 (2017).

    Article CAS PubMed PubMed Central Google Scholar

  • Johnson, K. M., Taslim, C., Saund, R. S. & Lessnick, S. L. Identification of two types of GGAA-microsatellites and their roles in EWS/FLI binding and gene regulation in Ewing sarcoma. PLoS ONE 12e0186275 (2017).

    Article PubMed PubMed Central Google Scholar

  • Guillon, N. et al. The oncogenic EWS-FLI1 protein binds in vivo GGAA microsatellite sequences with potential transcriptional activation function. PLoS ONE 4e4932 (2009).

    Article PubMed PubMed Central Google Scholar

  • Li, Z. et al. ETV6NTRK3 fusion oncogene initiates breast cancer from committed mammary progenitors via activation of AP1 complex. Cancer Cell 12542–558 (2007).

    Article CAS PubMed PubMed Central Google Scholar

  • Przybyl, J. et al. Gene expression profiling of low-grade endometrial stromal sarcoma indicates fusion protein-mediated activation of the Wnt signaling pathway. Gynecol. Oncol. 149388–393 (2018).

    Article CAS PubMed Google Scholar

  • Gordon, A. T. et al. A novel and consistent amplicon at 13q31 associated with alveolar rhabdomyosarcoma. Genes Chromosomes Cancer 28220–226 (2000).

    CAS PubMed Google Scholar

  • Yoon, J. W., Lamm, M., Chandler, C., Iannaccone, P. & Walterhouse, D. Up-regulation of GLI1 in vincristine-resistant rhabdomyosarcoma and Ewing sarcoma. BMC Cancer 20511 (2020).

    Article CAS PubMed PubMed Central Google Scholar

  • Birdsey, G. M. et al. The endothelial transcription factor ERG promotes vascular stability and growth through Wnt/β-catenin signaling. Dev. Cell 3282–96 (2015).

    Article CAS PubMed PubMed Central Google Scholar

  • Brcic, I. et al. Implementation of copy number variations-based diagnostics in morphologically challenging EWSR1/FUS::NFATC2 neoplasms of the bone and soft tissue. Int. J. Mol. Sci. 2316196 (2022).

    Article PubMed PubMed Central Google Scholar

  • Deplus, R. et al. TMPRSS2-ERG fusion promotes prostate cancer metastases in bone. Oncotarget 811827–11840 (2016).

    Article PubMed Central Google Scholar

  • Parviz, F. et al. Hepatocyte nuclear factor 4α controls the development of a hepatic epithelium and liver morphogenesis. Nat. Genet. 34292–296 (2003).

    Article CAS PubMed Google Scholar

  • Zhang, B. et al. Proteogenomic characterization of human colon and rectal cancer. Nature 513382–387 (2014).

    Article CAS PubMed PubMed Central Google Scholar

  • Weinstein, J. N. et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 451113–1120 (2013).

    Article PubMed PubMed Central Google Scholar

  • Davis, R. B., Kaur, T., Moosa, M. M. & Banerjee, P. R. FUS oncofusion protein condensates recruit mSWI/SNF chromatin remodeler via heterotypic interactions between prion‐like domains. Protein Sci. Publ. Protein Soc. 301454–1466 (2021).

    Article CAS Google Scholar

  • Domingo, J. et al. Non-linear transcriptional responses to gradual modulation of transcription factor dosage. Preprint at bioRxiv https://doi.org/10.1101/2024.03.01.582837 (2024).

  • Backman, J. D. et al. Exome sequencing and analysis of 454,787 UK Biobank participants. Nature 599628–634 (2021).

    Article CAS PubMed PubMed Central G Oogle Scholar

  • Lancaster, A. K., Nutter-Upham, A., Lindquist, S. & King, O. D. PLAAC: a web and command-line application to identify proteins with prion-like amino acid composition. Bioinformatics 302501–2502 (2014).

    Article CAS PubMed PubMed Central Google Scholar

  • Farag, M., Borcherds, W. M., Bremer, A., Mittag, T. & Pappu, R. V. Phase separation in mixtures of prion-like low complexity domains is driven by the interplay of homotypic and heterotypic interactions. Preprint at bioRxiv https://doi.org/10.1101/2023.03.15.532828 (2023).

  • Boncella, A. E. et al. Composition-based prediction and rational manipulation of prion-like domain recruitment to stress granules. Proc. Natl Acad. Sci. USA 1175826–5835 (2020).

    Article CAS PubMed PubMed Central Google Scholar

  • Sprunger, M. L. & Jackrel, M. E. Prion-like proteins in phase separation and their link to disease. Biomolecules 111014 (2021).

    Article CAS PubMed PubMed Central Google Scholar

  • Wang, Y. et al. Dissolution of oncofusion transcription factor condensates for cancer therapy. Nat. Chem. Biol. 191223–1234 (2023).

    Article CAS PubMed Google Scholar

  • Frankish, A. et al. GENCODE 2021. Nucleic Acids Res. 49D916–D923 (2021).

    Article CAS PubMed Google Scholar

  • Rubin, A. F. et al. A statistical framework for analyzing deep mutational scanning data. Genome Biol. 18150 (2017).

    Article PubMed PubMed Central Google Scholar

  • Corces, M. R. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat. Methods 14959–962 (2017).

    Article CAS PubMed PubMed Central Google Scholar

  • Reske, J. J., Wilson, M. R. & Chandler, R. L. ATAC-seq normalization method can significantly affect differential accessibility analysis and interpretation. Epigenetics Chromatin 1322 (2020).

    Article CAS PubMed PubMed Central Google Scholar

  • Center for High Throughput Computing (University of Wisconsin–Madison); https://doi.org/10.21231/GNT1-HW21. Accessed September 2021

  • Frenkel, M., Corban, J. E., Hujoel, M. L. A., Morris, Z. & Raman, S. Large-scale discovery of chromatin dysregulation induced by oncofusions and other protein-coding variants. NCBI https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE243553 (2024).

  • Frenkel, M., Corban, JE, Hujoel, MLA, Morris, Z. & Raman, S. Oncofusion PROD-ATAC. GitHub https://github.com/mfrenkel16/OncofusionPRODATAC (2024).

  • Spread the love

    Leave a Reply